Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Immunol ; 210(11): 1687-1699, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2300707

ABSTRACT

Although CD4+CD25+FOXP3+ regulatory T (TREG) cells have been studied in patients with COVID-19, changes in the TREG cell population have not been longitudinally examined during the course of COVID-19. In this study, we longitudinally investigated the quantitative and qualitative changes in the TREG cell population in patients with COVID-19. We found that the frequencies of total TREG cells and CD45RA-FOXP3hi activated TREG cells were significantly increased 15-28 d postsymptom onset in severe patients, but not in mild patients. TREG cells from severe patients exhibited not only increased proliferation but also enhanced apoptosis, suggesting functional derangement of the TREG cell population during severe COVID-19. The suppressive functions of the TREG cell population did not differ between patients with severe versus mild COVID-19. The frequency of TREG cells inversely correlated with SARS-CoV-2-specific cytokine production by CD4+ T cells and their polyfunctionality in patients with mild disease, suggesting that TREG cells are major regulators of virus-specific CD4+ T cell responses during mild COVID-19. However, such correlations were not observed in patients with severe disease. Thus, in this study, we describe distinctive changes in the TREG cell population in patients with severe and mild COVID-19. Our study provides a deep understanding of host immune responses upon SARS-CoV-2 infection in regard to TREG cells.


Subject(s)
COVID-19 , T-Lymphocytes, Regulatory , Humans , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Interleukin-2 Receptor alpha Subunit , Forkhead Transcription Factors
2.
Sci Rep ; 12(1): 21227, 2022 12 08.
Article in English | MEDLINE | ID: covidwho-2151083

ABSTRACT

Although nearly a fifth of symptomatic COVID-19 patients suffers from severe pulmonary inflammation, the mechanism of developing severe illness is not yet fully understood. To identify significantly altered genes in severe COVID-19, we generated messenger RNA and micro-RNA profiling data of peripheral blood mononuclear cells (PBMCs) from five COVID-19 patients (2 severe and 3 mild patients) and three healthy controls (HC). For further evaluation, two publicly available RNA-Seq datasets (GSE157103 and GSE152418) and one single-cell RNA-Seq dataset (GSE174072) were employed. Based on RNA-Seq datasets, thrombospondin 1 (THBS1) and interleukin-17 receptor A (IL17RA) were significantly upregulated in severe COVID-19 patients' blood. From single-cell RNA-sequencing data, IL17RA level is increased in monocytes and neutrophils, whereas THBS1 level is mainly increased in the platelets. Moreover, we identified three differentially expressed microRNAs in severe COVID-19 using micro-RNA sequencings. Intriguingly, hsa-miR-29a-3p significantly downregulated in severe COVID-19 was predicted to bind the 3'-untranslated regions of both IL17RA and THBS1 mRNAs. Further validation analysis of our cohort (8 HC, 7 severe and 8 mild patients) showed that THBS1, but not IL17RA, was significantly upregulated, whereas hsa-miR-29a-3p was downregulated, in PBMCs from severe patients. These findings strongly suggest that dysregulated expression of THBS1, IL17RA, and hsa-miR-29a-3p involves severe COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Humans , Thrombospondin 1/genetics , COVID-19/genetics , Leukocytes, Mononuclear , MicroRNAs/genetics
3.
J Korean Med Sci ; 37(22): e175, 2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1879451

ABSTRACT

BACKGROUND: Numerous patients around the globe are dying from coronavirus disease 2019 (COVID-19). While age is a known risk factor, risk analysis in the young generation is lacking. The present study aimed to evaluate the clinical features and mortality risk factors in younger patients (≤ 50 years) with a critical case of COVID-19 in comparison with those among older patients (> 50 years) in Korea. METHODS: We analyzed the data of adult patients only in critical condition (requiring high flow nasal cannula oxygen therapy or higher respiratory support) hospitalized with PCR-confirmed COVID-19 at 11 hospitals in Korea from July 1, 2021 to November 30, 2021 when the delta variant was a dominant strain. Patients' electronic medical records were reviewed to identify clinical characteristics. RESULTS: During the study period, 448 patients were enrolled. One hundred and forty-two were aged 50 years or younger (the younger group), while 306 were above 50 years of age (the older group). The most common pre-existing conditions in the younger group were diabetes mellitus and hypertension, and 69.7% of the patients had a body mass index (BMI) > 25 kg/m². Of 142 younger patients, 31 of 142 patients (21.8%, 19 women) did not have these pre-existing conditions. The overall case fatality rate among severity cases was 21.0%, and it differed according to age: 5.6% (n = 8/142) in the younger group, 28.1% in the older group, and 38% in the ≥ 65 years group. Age (odds ratio [OR], 7.902; 95% confidence interval [CI], 2.754-18.181), mechanical ventilation therapy (OR, 17.233; 95% CI, 8.439-35.192), highest creatinine > 1.5 mg/dL (OR, 17.631; 95% CI, 8.321-37.357), and combined blood stream infection (OR, 7.092; 95% CI, 1.061-18.181) were identified as independent predictors of mortality in total patients. Similar patterns were observed in age-specific analyses, but most results were statistically insignificant in multivariate analysis due to the low number of deaths in the younger group. The full vaccination rate was very low among study population (13.6%), and only three patients were fully vaccinated, with none of the patients who died having been fully vaccinated in the younger group. Seven of eight patients who died had a pre-existing condition or were obese (BMI > 25 kg/m²), and the one remaining patient died from a secondary infection. CONCLUSION: About 22% of the patients in the young critical group did not have an underlying disease or obesity, but the rate of obesity (BMI > 25 kg/m²) was high, with a fatality rate of 5.6%. The full vaccination rate was extremely low compared to the general population of the same age group, showing that non-vaccination has a grave impact on the progression of COVID-19 to a critical condition. The findings of this study highlight the need for measures to prevent critical progression of COVID-19, such as vaccinations and targeting young adults especially having risk factors.


Subject(s)
COVID-19 , Adult , Age Distribution , Aged , COVID-19/mortality , COVID-19/therapy , Female , Hospitalization , Humans , Male , Middle Aged , Obesity/complications , Risk Factors , SARS-CoV-2 , Young Adult
4.
Open Forum Infect Dis ; 9(4): ofac053, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1806558

ABSTRACT

Background: Regdanvimab (CT-P59) is a monoclonal antibody with neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report on part 1 of a 2-part randomized, placebo-controlled, double-blind study for patients with mild-to-moderate coronavirus disease 2019 (COVID-19). Methods: Outpatients with mild-to-moderate COVID-19 received a single dose of regdanvimab 40 mg/kg (n = 100), regdanvimab 80 mg/kg (n = 103), or placebo (n = 104). The primary end points were time to negative conversion of SARS-CoV-2 from nasopharyngeal swab based on quantitative reverse transcription polymerase chain reaction (RT-qPCR) up to day 28 and time to clinical recovery up to day 14. Secondary end points included the proportion of patients requiring hospitalization, oxygen therapy, or mortality due to COVID-19. Results: Median (95% CI) time to negative conversion of RT-qPCR was 12.8 (9.0-12.9) days with regdanvimab 40 mg/kg, 11.9 (8.9-12.9) days with regdanvimab 80 mg/kg, and 12.9 (12.7-13.9) days with placebo. Median (95% CI) time to clinical recovery was 5.3 (4.0-6.8) days with regdanvimab 40 mg/kg, 6.2 (5.5-7.9) days with regdanvimab 80 mg/kg, and 8.8 (6.8-11.6) days with placebo. The proportion (95% CI) of patients requiring hospitalization or oxygen therapy was lower with regdanvimab 40 mg/kg (4.0% [1.6%-9.8%]) and regdanvimab 80 mg/kg (4.9% [2.1%-10.9%]) vs placebo (8.7% [4.6%-15.6%]). No serious treatment-emergent adverse events or deaths occurred. Conclusions: Regdanvimab showed a trend toward a minor decrease in time to negative conversion of RT-qPCR results compared with placebo and reduced the need for hospitalization and oxygen therapy in patients with mild-to-moderate COVID-19. Clinical trial registration : NCT04602000 and EudraCT 2020-003369-20.

5.
J Allergy Clin Immunol ; 148(4): 996-1006.e18, 2021 10.
Article in English | MEDLINE | ID: covidwho-1330917

ABSTRACT

BACKGROUND: Our understanding of adaptive immune responses in patients with coronavirus disease 2019 (COVID-19) is rapidly evolving, but information on the innate immune responses by natural killer (NK) cells is still insufficient. OBJECTIVE: We aimed to examine the phenotypic and functional status of NK cells and their changes during the course of mild and severe COVID-19. METHODS: We performed RNA sequencing and flow cytometric analysis of NK cells from patients with mild and severe COVID-19 at multiple time points in the course of the disease using cryopreserved PBMCs. RESULTS: In RNA-sequencing analysis, the NK cells exhibited distinctive features compared with healthy donors, with significant enrichment of proinflammatory cytokine-mediated signaling pathways. Intriguingly, we found that the unconventional CD56dimCD16neg NK-cell population expanded in cryopreserved PBMCs from patients with COVID-19 regardless of disease severity, accompanied by decreased NK-cell cytotoxicity. The NK-cell population was rapidly normalized alongside the disappearance of unconventional CD56dimCD16neg NK cells and the recovery of NK-cell cytotoxicity in patients with mild COVID-19, but this occurred slowly in patients with severe COVID-19. CONCLUSIONS: The current longitudinal study provides a deep understanding of the NK-cell biology in COVID-19.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation , SARS-CoV-2/immunology , Adult , COVID-19/pathology , Humans , Killer Cells, Natural/pathology , Longitudinal Studies , Male , Middle Aged , Prospective Studies , RNA-Seq
6.
Clin Microbiol Infect ; 28(2): 292-296, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1312375

ABSTRACT

OBJECTIVES: We aimed to assess the longevity of spike-specific antibody responses and neutralizing activity in the plasma of recovered Middle East respiratory syndrome (MERS) patients. METHODS: We traced the antibody responses and neutralizing activity against MERS coronavirus (MERS-CoV) in peripheral blood samples collected from 70 recovered MERS patients for 5 years after the 2015 MERS outbreak in South Korea. We also measured the half-life of neutralizing antibody titres in the longitudinal specimens. RESULTS: The seropositivity rate persisted for up to 4 years (50.7-56.1%), especially in MERS patients who suffered from severe pneumonia, and then decreased (35.9%) in the fifth year. Although the spike-specific antibody responses decreased gradually, the neutralizing antibody titres decreased more rapidly (half-life: 20 months) in 19 participants without showing negative seroconversion during the study period. Only five (26.3%) participants had neutralizing antibody titres greater than 1/1000 of PRNT50, and a high neutralizing antibody titre over 1/5000 was not detected in the participants at five years after infection. DISCUSSION: The seropositivity rate of the recovered MERS patients persisted up to 4 years after infection and significantly dropped in the fifth year, whereas the neutralizing antibody titres against MERS-CoV decreased more rapidly and were significantly reduced at 4 years after infection.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections/epidemiology , Follow-Up Studies , Humans , Spike Glycoprotein, Coronavirus
7.
Infect Chemother ; 53(1): 118-127, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1200183

ABSTRACT

BACKGROUND: A pooling test is a useful tool for mass screening of coronavirus disease 2019 (COVID-19) in the pandemic era. We aimed to optimize a simple two-step pooling test by estimating the optimal pool size using experimental and mathematical validation. MATERIALS AND METHODS: Experimental pools were created by mixing one positive respiratory sample with various numbers of negative samples. We selected positive samples with cycle threshold (Ct) values greater than 32 to validate the efficiency of the pooling test assuming a high likelihood of false-negative results due to low viral loads. The positivities of the experimental pools were investigated with a single reverse-transcription polymerase chain reaction (RT-PCR) using the U-TOP™ COVID-19 Detection Kit Plus (Seasun Biomaterials, Daejeon, Korea). We used the Dorfman equation to calculate the optimal size of a pooling test mathematically. RESULTS: Viral RNA could be detected in a pool with a size up to 11, even if the Ct value of a positive sample was about 35. The Dorfman equation showed that the optimal number of samples in a pool was 11 when the prevalence was assumed to be 0.66% based on the test positivity in Daejeon, Korea from April 1, 2020 to November 10, 2020. The efficiency of the pooling test was 6.2, which can save 83.9 of 100 individual tests. CONCLUSION: Eleven samples in a pool were validated optimal experimentally assuming a prevalence of 0.66%. The pool size needs modification as the pandemic progresses; thus, the prevalence should be carefully estimated before pooling tests are conducted.

8.
J Korean Med Sci ; 35(28): e257, 2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-655156

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This disease, which is quickly spreading worldwide, has high potential for infection and causes rapid progression of lung lesions, resulting in a high mortality rate. This study aimed to investigate the effects of SARS-CoV-2 infection on renal function in patients with COVID-19. METHODS: From February 21 to April 24, 2020, 66 patients diagnosed with COVID-19 at Chungnam National University Hospital were analyzed; all patients underwent routine urinalysis and were tested for serum creatinine, urine protein to creatinine ratio (PCR), and urine albumin to creatinine ratio (ACR). RESULTS: Acute kidney injury (AKI) occurred in 3 (4.5%) of the 66 patients, and 1 patient with AKI stage 3 underwent hemodialysis. Upon follow-up, all 3 patients recovered normal renal function. Compared with patients with mild COVID-19, AKI (n = 3) occurred in patients with severe COVID-19, of whom both urine PCR and ACR were markedly increased. CONCLUSION: The incidence of AKI was not high in COVID-19 patients. The lower mortality rate in SARS-CoV-2 infection compared with previous Middle East respiratory syndrome and SARS-CoV infections is thought to be associated with a low incidence of dysfunction in organs other than the lungs.


Subject(s)
Acute Kidney Injury/virology , Albuminuria/urine , Coronavirus Infections/pathology , Creatinine/blood , Pneumonia, Viral/pathology , Proteinuria/urine , Acute Kidney Injury/epidemiology , Acute Kidney Injury/pathology , Aged , Albumins/analysis , Betacoronavirus , COVID-19 , Female , Glomerular Filtration Rate/physiology , Humans , Kidney Function Tests , Male , Middle Aged , Pandemics , Republic of Korea/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL